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Early investigations of wave motion against a flow background are discussed in [l, 2]. 
An enormous number of papers have been devoted to the study of wave stability in nonuniform 
incompressible fluids. Here we cite only the review papers [I-5]. Recent analyses of wave 
phenomena have been particularly concerned with mode solutions i.e. discreet values of the 
frequencies, since this part of the spectrum is connected with hydrodynamical instability 
processes [6]. 

In [7] the effect of compressibility on flow stability was studied, amd it was shown 
that in the linear approximation, compressibility leads to an increase in stability of flow. 
This discussion was developed further in [8], where it was shown that the stabilizing effect 
arises from the conversion of a definite amount of energy from the basic flow into work 
against the compressional forces. 

In the present paper, wave motion in a nonuniform compressible fluid in the presence of 
shear flow is studied. We use the Hamiltonian approach [9-12] and develop further this for- 
mulation. 

I. Basic Equations. Hamiltonian Formulation. We study the behavior of a nonuniform 
compressible fluid in the approximation of an isothermal atmosphere. This model is described 
by the following closed set of equations in the Euler representation: the Euler hydrodyna- 
mical equation 

the equation of continuity 

v + (vv)v = --(t/p)Vp - -  V%; (1 .1 )  

P + div pv = O; ( 1 . 2 )  

the equation of conservation of entropy of the particles of the medium 

+ (vv)o = O; (1 .3 )  

the relation for the internal energy, which plays the role of an equation of state 

~ = ~ ( p , ~ ) - - ~ 0  (~)~- I  exp [ ~ _ J  (~ _ a0)l; (1 .4 )  

and the basic relation of thermodynamics 

Td~ = d ~  -t- pal(tip). ( 1 . 5 )  

In  ( 1 . 1 ) - ( 1 . 5 )  the  f o l l o w i n g  n o t a t i o n  i s  used :  v ,  h y d r o d y n a m i c a l  v e l o c i t y ;  p,  p r e s s u r e ;  p,  
d e n s i t y ;  ~ ,  o ,  i n t e r n a l  e n e r g y  and e n t r o p y  p e r  u n i t  mass;  R, gas c o n s t a n t ;  y ,  a d i a b a t i c  expo-  
n e n t ;  and ~ 0 ,  po ,  oo ,  i n t e r n a l  e n e r g y  d e n s i t y ,  and e n t r o p y  a t  z = 0. 

F i n a l l y  X = gz,  where the  z ax i s  i s  t a k e n  a lo n g  the  v e r t i c a l .  In  ana logy  wi th  [ 9 - 1 1 ] ,  
the  s e t  o f  e q u a t i o n s  ( 1 . 1 ) - ( 1 . 4 )  can be r e p r e s e n t e d  i n  H a m i l t o n i a n  form 

= 6E/6~, ~ = --6E/6p, (I .6) 

where the  e n e r g y  o f  the  medium has the  form 

E = ~ d x . p { ~  + ~ + %} ( d x = d x d y d z ) ,  

and (p,  r  (o ,  X), (a ,  ~) a re  c a n o n i c a l l y  c o n j u g a t e  p a i r s .  I n t r o d u c t i o n  o f  the  Clebsch  
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variables ~, p, which play the role of Lagrangian coordinates, is necessary for descriptions 
of vortex motion with complex topology, see [12-15], for example. Introductions of the addi- 
tional pair of variables (~, p) is necessary when it is not possible to describe the equilib- 
rium state of the medium (i.e., a state where all physical quantities -- velocity, entropy, 
density, etc. -- are not functions of time) in terms of the variables (p,(p), (~, I). In our 
study it will be sufficient to consider only the pairs (0, ~) and (~, I); in this case the 
velocity can be represented in the form (see [II]) 

v = Vq~ - -  (L/p)V~. (1 ,7 )  

2. Shear Flow. We consider waves propagating against a steady-state dynamical back- 
ground flow, denoted by subscript s. The velocity profile of the steady-state fluid flow is 
given in the form 

vs = u(z)l ,  

where 1 is the unit vector along the x axis�9 A velocity profile of the above form is nor- 
mally called shear flow. From the form of the external force field, we put Ps = ps(z), Os = 

Os(Z). Then the equations for ~ and I (see (I .6)) simplify considerably and can be reduced 
to the form 

% + u~ + gz + ? R T / ( ?  - -  1) = O, (2 .1 )  

"Z,~ + uOL/Ox + p~T~ = O. 

The s o l u t i o n  to  ( 2 , 1 )  i s  l i n e a r  w i t h  r e s p e c t  to  the  t ime :  

(u2 ,RT, ) Ou lO%,-~ 
~ ,  = u z  - ~ + ~ - 7  + gz  t, z~ = - p , r , t  + p~ ~ ~ - )  (z  - ut). ( 2 . 2 )  

S u b s t i t u t i n g  (2 .2 )  i n t o  the  e x p r e s s i o n  f o r  the  v e l o c i t y  ( 1 . 7 )  and u s i n g  the  e q u a t i o n  o f  s t a t e  
( 1 .4 )  we o b t a i n  the  s t r a t i f i e d  d e n s i t y  law 

p~(z) = Po e x p  ( - -z /I-I)  

and the entropy 

o~(z) - -  c~(O) = R z / H ,  

where H = c~/yg; and c s is the adiabatic speed of sound. It is necessary to emphasize that 
~s and ls do not have a definite physical meaning, and are simply functions of the coordi- 
nates and the time. The first derivatives of these potentials do have physical significance; 
the derivatives 3'~/3xi appear in the expression for the velocity (1.7) and 3~/3t appears in 
the pressure. 

The time dependence of the potentials ~s and Is complicates the study of wave processes 
against the stationary state background. However, it can be shown (we omit the details) that 
in all orders of perturbation theory, one can if necessary eliminate the explicit time depen- 
dence of the velocity (and hence also that of the wave field Hamiltonian) using canonical 
transformations; thus nonlinear interactions can be considered to all orders. However, for 
our purposes, it is enough to eliminate the time dependence of the quadratic part of the 
Hamiltonian, which completely describes linear waves. To do this, a canonical transformation 
of the following form is carried out 

= r ~ + u z - -  + ~_--i + g z ) t - -  Tf r ~a l t _ -ff b-f k T f  ] 

Ou {0%~-1 .  R 

where (Pl, (p:l) and (oi, 11) are the new canonical variables, which as before form canonical 
pairs. The proof that transformation (2.3) is canonical can be demonstrated in the usual 
way (see for example [16]), in our case we have 

S dx {~16p1 - -  r + ~1~1 - -  ~Sa} + D F I  = ( ~  - -  E)  dt  

where  DFr i s  t he  t o t a l  d i f f e r e n t i a l  form o f  t he  g e n e r a t i n g  f u n c t i o n a l  F1, and ~ 1  i s  t he  new 
H a m i l t o n i a n .  The g e n e r a t i n g  f u n c t i o n a l  i s  t h e n  c a l c u l a t e d  to  be  

F 1 : - -  t dx .  Pl + y - -  t -~ dz , j .  -7 77 ~-z \-'o-f/ 1 -;- 
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and the Hamiltonian and velocity are given by 

iv  2 u 2 TBTs B Tsox R &~(Oosl-i } (2.4) 

( 
n ~- (YlV J ( $ -  I/t) v = ul -+- V?~ - -  --V6~ - -  p~ ~ ~-~ 

where n is the unit vector along the z axis. If we now write out Hamilton's equations in the 

new variables, calculatev and substitute this expression for v into the Euler equation (I.I), 
we reach an identity. This shows not only that the Hamiltonian structure of the equations is 
preserved (which is obvious; see [11]) but also that a steady-state dynamical regime (where 
the medium can be in a stationary state) can be realized in the medium. Earlier we formu- 
lated only the a priori assertion that such a state was available to the system (this is not 
always true in general), and a steady-state dynamical regime was only guaranteed when the 

consistency condition was satisfied. 

3. Eigenvalue Problem. We write the Hamiltonian (2.4) in a more convenient form by 

performing the canonical transformation 

_ ^1/2 t 1/2 - -  q~ : q ) l ~ S  , )~ ~--- H)~IP~ "1/~, o : )7olp~' , p : ( P l - -  P~)P, 1/~., ]d  = 9 5 t ,  

where p ,  ~p, o ,  ~ are the new variables. We now expand the Hamiltonian in a power series in 
these variables; this yields the quadratic part of the Hamiltonian governing the wave-field 

which does not depend explicitly on time: 

V+~ ~--~n _2u~+2up~ z +zn~T~+c~ p2+2 ~-F T2 jj- 2/6<2) = y dx 
We a p p l y  a F o u r i e r  t r a n s f o r m  w i t h  r e s p e c t  t o  t h e  h o r i z o n t a l  c o o r d i n a t e s  r = {x ,  y )  on ( 3 . 1 )  
using the notation 

I y ~kr.. q~=~ , ( k ~ , z ) e  aK• 

~ �9 k, ,  = {kl, kin}; m is the unit vector along the y axis. w h e r e  4 - - -  p , 

(l 

W i t h  t h e  h e l p  o f  t h e  a b o v e  n o t a t i o n ,  we w r i t e  ( 3 . 1 )  i n  c o m p a c t  f o r m  ( s e e  a l s o  [ 1 7 ] )  

,~(2) = ~ dzdkj.~ + (k~, z) ~ 0 ~  (k• z), ( 3 . 2 )  

whe re 

i t a ~ J(2_t ff  o) iukl ikl  -- -- -- fI Ou 
k~ + 41~ o~2 :x E~ 

! I ( t  O~ ~ 0 --/ukl 

iukl 0 c~ c~ ~ -- ! ? 
~3u . H ~F tkl iukl c~ Y ? I c~ Y ~ ----it  

and  t h e  s i g n  + d e n o t e s  an  H e r m i t i a n  c o n j u g a t e .  I n  ( 3 . 2 )  we h a v e  u s e d  h e  r e l a t i o n s  

y -- + S 

V-+If for Z-4- 4- oo. 

In matrix form, the equations of motion in the linear approximation take the form 

5~'e) ( 3 . 3 )  
A ,  (k• z) ---- - -  i ~ , +  (kz ,  z)' 
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where 

7.= 0 0 0 -- 
0 0 " 

0 

Taking the time Fourier transform of (3.3) we obtain the matrix equation 

7 !]**(k~, z> say 0 l)'llr z)tl 

where 

(3.4) 

I 0 ~ t (1  
k~ + - ~  ~ ~ "-g" ~ '27t 

"h= 1 I 0 ) .  l 
I - - f f  (.~ + ~ ~-~ 

? Y 

, 1  (k• z) -- !1 ~ (k,., z) --~(k~, z)l' 

Oz 

o I ikl 0 ; 

, ~ (kx ;  z) = p(k, , ,  z)~ I 

Expanding out (3.4) we have the set of equations 

h*1(k,., z) + 7n,~, z) + i~Z~,(k~, z) = 0, 

a~l(k~,  z) + ~ ( k ~ ,  z) + ~f~I~l(k.~, z) ---- O, 

which give a boundary-value problem for the potentials. For simplicity, we set up the prob- 

lem for ~(ka, z). After straightforward but tedious calculation, we find 

kl' ~ - ~  ~ --N'2L~] (k l ,  z) 0 (~z/  c 2( ) ~  -~ @u__,V2 "1- "CsKmJe# -~ . 
f]~-- N" 

HereN2=--g 0s Oz ~ = (y--l) is the square of the Vaisala frequency, and r - ~ - ~ - ~ - z  -~-, 

is the Eckart constant (see, for example, [18]). 

The differential equation (3.5) is to be solved subject to the boundary conditions 

0q~(k~, z)/Oz ~ 0, rp(k• z) -~  0 ( z - ~  +oo) ,  

s p e c i f y i n g  t h a t  wave m o t i o n  i s  a b s e n t  a t  i n f i n i t y .  The above  d i f f e r e n t i a l  e q u a t i o n  has  s i n -  
g u l a r i t i e s  a t  p o i n t s  z i  whe re  t he  c o n d i t i o n  

co--u(z,)kl  = 0 ,  ~ - -  u(z~)kl + N  = 0 ,  ~ - - u ( z a ) k l - - N  = 0  

i s  s a t i s f i e d .  These  s i n g u l a r  p o i n t s  c o r r e s p o n d  to  t h e  s o - c a l l e d  c r i t i c a l  l e v e l s  [ 1 8 ] .  Fo r  
a u n i f o r m  medium we h a v e  z~ = z2 = z~ ,  i . e . ,  t h e  L e v e l s  a r e  d e g e n e r a t e .  I t  s h o u l d  be  p o i n t e d  
o u t  t h a t  t h e  t r e a t m e n t  o f  wave p r o c e s s e s  i n  r o t a t i n g  r e f e r e n c e  f r a m e s  a l s o  t e a d s  t o  two new 
c r i t i c a l  l e v e l s  [ 1 8 ] .  U s i n g  t he  s t a n d a r d  s u b s t i t u t i o n  

i 

we reduce (3.5) to the form 
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Z~ 

i \ 

Fig. 1 

�9 [ ( . c: (,,>, <.,,-- , C~z]  " + N~) ~ {k_,,, z) , ~ ~ - -  ~ k~ ~ ( ~ - -  Jv~) ~ 

2c2skl c}u ~2 o] (3 .6 )  
~ _ ~v ~ + A: ~;k-,~ ~ - -  ~ j ~o (k.~, z) = o. 

The solution of the differential equation (3.6) is quite difficult for an arbitrary velocity 
profile. Therefore, we now limit our treatment to the case of a simple example, which 
apparently retains the basic features of more complicated situations. We will study only the 
case of discreet frequencies, since the mode solutions are the most interesting from the 
point of view of linear and nonlinear instabilities. 

~ c i f i c  Form of the Velocity Profile. One of the most typical forms of large-scale 
motion in atmospheres is shear flow. In Fig. Ia we show the typical dependence of the flow 
velocity on the height above the surface of the earth (the curve is taken from []8]). The 
shape of the curve about the extremum suggests an approximation of the form (Fig. ]b): 

' V~ ! o  ,(,> ,o(, , ,  (,o-,>1), 
where 0(t) is the Heaviside unit step function. The atmosphere is here considered to be un- 
bounded with sufficiently large distance scales LI and L2 (see below). The weak linear de- 
pendence of the velocity profile on the z coordinate suggests that in subsequent calculations 
we can ignore terms proportional to 3u/Dz and (3u/~z) 2 if they do not contain delta-functions. 

With these assumptions (3.6) simplifies considerably 

0~(k,,_, z)/Oz ~ -4- 2[q -k ~tS(z)l$(k~, z) ---- 0, 

whe re 

(4.1) 

Q = ~ [ f ~ _  ~/k ~ , I ~ [ AT2,.,2L.21 

klu o Q 1 l t 

and for simplicity we put Zo = 0 and uo > 0. We also use relations of the form 3=u/Bz = = 
uoS(z)/L in the calculation. The conditions of applicability of (4.1) is the inequality 

L << i. Within our approximations, we can assume that ~ = m- uk| is not a function of z. 
Then integrating (4.1) we obtain the jump condition 

~ (k._~, z) I O~ (k~, I +o-- ,z) -- 2 ~  (k~, 0). 
Oz OZ --0 ~- 

Since we are studying the discreet frequency spectrum, we impose the condition Q < O, ~>0. 
Under these assumptions, the solution to (4.1) ean be represented in the form (see for 
examn le [19]) 

~ ( k , ,  z) : B(• exp (--• (4 .2)  

where the subscript j labels the wave mode and the coefficient B(uj) can be found from the 
normalization condition (see []7]). The solution corresponds to wave motion localized near 
the plane z = 0, with an amplitude that falls rapidly and exponentially with increasing dis- 
tance from this plane. After substitution of the solution (4.2) into (4.1) and comparison 
of the coefficients, we obtain Qj = -x2/2 from which the dispersion equation is found in 
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\ \. / 

Fig. 2 

explicit form 

222 (kl)j uo~ j (4.3) ~ 1 2 

ajc.' - 

5. A n a l y s i s  o f  t he  D i s p e r s i o n  E q u a t i o  n . The d i s p e r s i o n  e q u a t i o n  ( 4 . 3 )  i s  an e i g h t -  
o r d e r  a l g e b r a i c  e q u a t i o n  f o r  the  f r e q u e n c y  ~ (o r  f~). In  o r d e r  to  s i m p l i f y  the  a n a l y s i s  o f  
this equation, we introduce the dimensionless parameters 

Mo = Uo/Cs, cos ~ = (kl)/k.~j, n j  -~ H ~ J e  s, 

= I t / L ,  ~,~ = k , , j I t .  

In  the  new v a r i a b l e s ,  ( 4 . 3 )  t akes  the  s i m p l e r  form 

Below we will consider the constant g =-~- MoP, vj. cos 2 r162 to be small. If we take u % I, then 
l 2 9~ the condition that E be small becomes -~-MowjCos~=j<<l. In subsonic flow when Mo << I, this 

does not impose a significant limitation on the wave number of propagating waves. We analyze 
the dispersion equation (5. I) graphically under the above assumptions. We plot xraphs of the 
functions (see Fig. 2) 

- - T l v l ~ 1 7 6  aj | ~ ~'--I]~" 
[ n~ 1' ~ j 

L ----- 

Fig. 3 
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Curves I-3 show the behavior of ~n~) for cos aj = 0.I, Mo = 0.I and different fixed values 

of ~j, where ~jl < ~j~ < vj3 (here the subscripts I, 2, 3 label the different curves). Curve 
2 

4 shows the dependence of r The number of points of intersection of the curves ~(n~) 

and ~2(n~) for a fixed value of ~j corresponds to the number of real roots of the dispersion 

equation (5.1). It follows from the graphical analysis that with increase of ~j, the number 

of real roots decreases from four to two. The dispersion curve in a coordinate system coupled 
to the flow is shown in Fi~. 3. Here Fig. 3a corresponds to waves propagatin~ in the direc- 
tion of the flow and Fi~. 3b corresponds to propagation against the flow. From analysis of 
these dispersion diagrams, one can provisionally separate the waves into two types. The 
first type is an acoustic surface wave (curve I~; the second type are internal gravity waves 
propagatinK in the nonuniform flow (curves 2, 3, 4). The point where curves 3 and 4 join is 
vj = ~* = I and is a bifurcation point. For vj > ~*, a pair of complex coniugate values of 

nj appear, which correspond to instability of waves of the second type. This instability is 

analogous to a centrifugal shear instability [7]. 

We now return to the relation 

( k l )  u o ~ 
-- Z~2 > 0 (5.2) 

and apply it to wave motion for subsonic flow. Elementary analysis of (5.2) shows that 
curves I and 2 correspond to waves propagating opposite to the direction of flow, while 3 
and 4 represent waves propagating along the flow. This refers to the propagation direction 
of the phase which, as is well known, does not in ~eneral coincide with the direction of the 
energy flux. We note that if waves of the types discussed above are excited in the system 
under consideration, their propagation will be waveguidelike with a selection effect. For 
example, the acoustic mode can propagate only in the direction opposite to the flow. 

The author expresses aupreciation to L. M. Brekhovskii for interest in the work and for 
useful discussions. 
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FLOW PAST FORWARD-FACING SMALL STEP 

V. V. Bogolepov UDC 5 3 2 . 5 2 6 . 0 1 1 : 5 1 8 . 5  

Uniform subsonic or supersonic laminar flow of a viscous fluid past a flat plate is con- 
sidered. A small two-dimensional roughness element is present on the flat plate surface at a 
distance 1 from the leading edge. The solution to Navier--Stokes equations is developed for 
the case when the characteristic Reynolds number Reo Pouo//~o E -2 tends to infinity r = = \ P o ~  

uo, ~o are the density, velocity, and the coefficient of dynamic viscosity in the undisturbed 
free stream). In what follows, only nondimensional quantities will be used and for this pur- 
pose the reference quantities are: 1 for length, uo for velocity, po for density, pouo 2 for 
pressure, uo 2 for enthalpy, 0oUo/ for the stream function, and ~o for the coefficient of 
dynamic viscosity. Systematic studies on the flow past small roughness over the surface of 
a body with characteristic transverse and longitudinal dimensions a and b (2~a~eSa~<b<l) 
have been done in [I, 2], where, in particular, it has been shown that the flow near a rough- 
ness with a ~ b ~ 0(~ 312) in the first approximation as e § O, is described by Navier--Stokes 
equations for incompressible fluid, the velocity profiles and enthalpy in the external flow 

2 
are sheared and the critical similarity parameter is the local Reynolds number Re = PwAal/~w 
(the index w refers to the values at the flat plate surface in undisturbed boundary layer), A 
is the shear stress at the flat plate surface in undisturbed boundary layer, a = ~3/2ai, al 
O(I). For Re, it is possible to obtain the following estimate [3]: Re ~ Re~/2(a/s) 2, from 
which it follows that as a/s ~ ] and Reo ~ IO s (i.e., for real and practically significant 
values of Reo) the value of Re cannot exceed a few tens. Solutions to Navier--Stokes equations 
for the incompressible shear flow past a roughness on a body surface with Re ~ 100 are ob- 
tained in [4-6]. One of the distinctive features of these solutions is their existence at 
Re = 0 [5, 6], i.e., solutions of Navier--Stokes equations have been obtained for plane flows. 
Besides, even at Re = 0 separated zones have been observed in the flow field. The damping 
of disturbances far behind such roughness is also very typical and its study can be made with 
an analysis of the boundary layer equations along with the local condition for the interaction 
with the subsonic wall layer of the undisturbed boundary layer [7, 8]. 

It is useful to mention that the flow past roughness with ~3/2<<a ~ b << ~ in the first 
approximation as ~ + 0 is described by Euler equations for incompressible fluid with an exter- 
nal shear flow [I, 2]. 

Let there be a rectangular step on a flat plate with a characteristic height a ~ O(~ 3/2) 
and a characteristic length gs/2<< b <<E3/4. As shown in [I' 2], the flow past such a rough- 
ness is described by linearized incompressible boundary-laver equation with linearized local 
conditions for the interaction with the subsonic wall layer of the undisturbed boundary layer. 
It has been obtained in [8] that on the surface of such a step as one moves away from its 
face the disturbances in heat flux hq and shear stress AT damp out at the following rate with 
respect to their values in the undisturbed boundary layer at the plate surface 

Aq  ~ AT  ~ X -1/3 (X"-)- 00) ( 2 .  1) 

( i . e . ,  damping  o f  d i s t u r b a n c e s  q and T i s  v e r y  w e a k ) ,  and  p r e s s u r e  d i s t u r b a n c e s  p < 0 i n c r e a s e  

]p] ,'~ xl/3 (x'-* co). ( 2 . 2 )  
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